Design an embedding update pipeline for refreshing stale embeddings. ## Update Triggers {{update_triggers}} ## Corpus Size {{corpus_size}} ## Update Constraints {{update_constraints}} Implement the pipeline: ```python class EmbeddingUpdatePipeline: def detect_stale_documents(self, last_update: datetime) -> List[str]: """Find documents needing re-embedding""" pass def prioritize_updates(self, doc_ids: List[str]) -> List[str]: """ Priority factors: - Access frequency - Content change magnitude - Query relevance """ pass def batch_update(self, doc_ids: List[str], batch_size: int) -> UpdateResult: """Process updates in batches""" pass def validate_update(self, doc_id: str, old_embedding: np.ndarray, new_embedding: np.ndarray) -> bool: """Validate embedding quality""" pass ``` Include: - Incremental update support - Rollback capability - Progress tracking - Quality gates
Embedding Update Pipeline
U
@
Design an embedding update pipeline with stale detection, priority-based processing, batch updates, and quality validation.
69 copies0 forks
Details
Category
CodingUse Cases
Embedding updatesData freshnessIndex maintenance
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared