Build a context relevance scorer for filtering retrieved documents before generation. ## Relevance Criteria {{relevance_criteria}} ## Query Types {{query_types}} ## Filtering Goals {{filtering_goals}} Implement relevance scoring: ```python class ContextRelevanceScorer: def score_document(self, query: str, document: str) -> float: """ Scoring signals: - Query-document similarity - Keyword overlap - Entity matching - Topic relevance """ pass def score_batch(self, query: str, documents: List[str]) -> List[float]: """Efficient batch scoring""" pass def filter_by_threshold(self, query: str, documents: List[str], threshold: float) -> List[str]: """Filter irrelevant documents""" pass def explain_score(self, query: str, document: str, score: float) -> str: """Explain scoring decision""" pass ``` Include: - LLM-based scoring option - Lightweight model alternative - Threshold calibration - Explainability features
Context Relevance Scorer
U
@
Build a context relevance scorer combining similarity, keyword, entity, and topic signals to filter retrieved documents before LLM generation.
56 copies0 forks
Details
Category
CodingUse Cases
Relevance scoringContext filteringRAG quality
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared