As a Lead AI Engineer, optimize the vector index configuration for our use case. ## Dataset Profile - Vector count: {{vector_count}} - Dimensionality: {{dimensions}} - Query volume: {{qps}} ## Current Configuration {{current_config}} ## Performance Metrics - Recall@10: {{recall_at_10}} - Query latency P99: {{latency_p99}}ms Evaluate index types and parameters: **HNSW Analysis**: - M parameter optimization - ef_construction tuning - ef_search calibration **IVF Analysis**: - nlist optimization - nprobe tuning - Quantization options (PQ, SQ) Provide: - Recommended configuration with rationale - Expected performance improvements - Memory impact assessment - Reindexing strategy
Vector Index Configuration Optimizer
U
@
Optimize vector index configurations by analyzing HNSW and IVF parameters with performance trade-off analysis and memory impact assessment.
49 copies0 forks
Details
Category
AnalysisUse Cases
Index optimizationVector search tuningPerformance tuning
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared