As a Lead AI Engineer, optimize GPU memory usage for our inference workload. ## Current Setup {{current_setup}} ## Model Details - Model: {{model_name}} - Parameters: {{param_count}} - Precision: {{precision}} ## GPU Constraints - GPU type: {{gpu_type}} - VRAM: {{vram_gb}}GB ## Optimization Goals {{optimization_goals}} Analyze optimization strategies: 1. **Quantization**: INT8, INT4, FP16, BF16 trade-offs 2. **Batching**: Optimal batch size for memory/throughput 3. **KV Cache**: Memory estimation and management 4. **Attention**: Flash attention, paged attention options 5. **Tensor Parallelism**: Multi-GPU distribution Provide: - Memory calculations for each configuration - Performance impact estimates - Implementation recommendations - Profiling methodology
GPU Memory Optimization Guide
U
@
Optimize GPU memory usage for LLM inference through quantization, batching, KV cache management, and attention optimizations with detailed calculations.
10 copies0 forks
Details
Category
AnalysisUse Cases
GPU optimizationMemory managementInference tuning
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared