Implement a reasoning trace logger for debugging LLM chain decisions. ## Chain Components {{chain_components}} ## Debugging Requirements {{debugging_requirements}} ## Storage Backend {{storage_backend}} Build the logger: ```python class ReasoningTraceLogger: def start_trace(self, request_id: str, input_data: dict) -> TraceContext: """Initialize new trace""" pass def log_step(self, ctx: TraceContext, step_name: str, input: Any, output: Any, metadata: dict) -> None: """ Log: - Step inputs/outputs - Latency - Token usage - Model used - Intermediate reasoning """ pass def log_decision(self, ctx: TraceContext, decision: str, alternatives: List[str], rationale: str) -> None: """Log decision points""" pass def export_trace(self, request_id: str, format: str) -> str: """Export for analysis""" pass ``` Include: - Structured logging format - Trace visualization - Search and filtering - PII redaction
Reasoning Trace Logger
U
@
Build a reasoning trace logger for debugging LLM chains with step tracking, decision logging, and visualization capabilities.
68 copies0 forks
Details
Category
CodingUse Cases
Debug loggingTrace analysisChain debugging
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared