Implement a comprehensive retry strategy for LLM API requests. ## Error Types {{error_types}} ## SLA Requirements {{sla_requirements}} ## Budget Constraints {{budget_constraints}} Build the retry system: ```python class LLMRetryStrategy: def classify_error(self, error: Exception) -> ErrorCategory: """ Categories: - TRANSIENT (rate limit, timeout) - RECOVERABLE (malformed response) - PERMANENT (auth, invalid request) """ pass def get_retry_config(self, category: ErrorCategory) -> RetryConfig: """ Config includes: - Max retries - Backoff strategy - Jitter settings """ pass async def execute_with_retry(self, request: LLMRequest) -> LLMResponse: """ Retry with: - Exponential backoff - Circuit breaker - Fallback models """ pass ``` Include: - Retry budgets - Fallback chains - Observability hooks - Dead letter handling
LLM Request Retry Strategy
U
@
Implement a comprehensive LLM retry strategy with error classification, exponential backoff, circuit breakers, and fallback chains.
34 copies0 forks
Details
Category
CodingUse Cases
Retry handlingError recoveryResilience patterns
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared