Build a tool for exploring latent space interpolation in embeddings. ## Embedding Model {{embedding_model}} ## Use Cases {{use_cases}} ## Exploration Goals {{exploration_goals}} Implement interpolation tools: ```python class LatentSpaceExplorer: def linear_interpolation(self, start: np.ndarray, end: np.ndarray, steps: int) -> List[np.ndarray]: """Linear interpolation between points""" pass def slerp(self, start: np.ndarray, end: np.ndarray, steps: int) -> List[np.ndarray]: """Spherical linear interpolation""" pass def find_nearest_documents(self, point: np.ndarray, k: int) -> List[Document]: """Find documents near interpolated point""" pass def visualize_path(self, path: List[np.ndarray]) -> plt.Figure: """Visualize interpolation in reduced dimensions""" pass ``` Applications: - Semantic gradients exploration - Concept blending - Gap analysis in corpus
Latent Space Interpolation Tool
U
@
Build latent space interpolation tools for exploring semantic gradients, concept blending, and corpus gap analysis in embedding spaces.
39 copies0 forks
Details
Category
CodingUse Cases
Latent explorationConcept analysisCorpus gaps
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared