Create a fine-tuning plan for our embedding model. ## Current Model {{current_model}} ## Domain Data {{domain_data_description}} ## Quality Issues {{quality_issues}} Develop a comprehensive plan: **Step 1: Data Preparation** - Training data collection strategies - Hard negative mining - Quality filtering - Data augmentation **Step 2: Training Configuration** - Loss function selection (contrastive, triplet, etc.) - Hyperparameter recommendations - Curriculum learning approach **Step 3: Evaluation Protocol** - Hold-out test sets - Domain-specific benchmarks - Production metric correlation **Step 4: Deployment Strategy** - A/B testing plan - Rollback criteria - Reindexing approach Provide code snippets for each step.
Embedding Model Fine-tuning Plan
U
@
Create a comprehensive embedding model fine-tuning plan covering data preparation, training configuration, evaluation, and deployment strategies.
68 copies0 forks
Details
Category
AnalysisUse Cases
Model fine-tuningEmbeddings improvementDomain adaptation
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared