Embedding Model Fine-tuning Plan

U

@

·

Create a comprehensive embedding model fine-tuning plan covering data preparation, training configuration, evaluation, and deployment strategies.

68 copies0 forks
Create a fine-tuning plan for our embedding model.

## Current Model
{{current_model}}

## Domain Data
{{domain_data_description}}

## Quality Issues
{{quality_issues}}

Develop a comprehensive plan:

**Step 1: Data Preparation**
- Training data collection strategies
- Hard negative mining
- Quality filtering
- Data augmentation

**Step 2: Training Configuration**
- Loss function selection (contrastive, triplet, etc.)
- Hyperparameter recommendations
- Curriculum learning approach

**Step 3: Evaluation Protocol**
- Hold-out test sets
- Domain-specific benchmarks
- Production metric correlation

**Step 4: Deployment Strategy**
- A/B testing plan
- Rollback criteria
- Reindexing approach

Provide code snippets for each step.

Details

Category

Analysis

Use Cases

Model fine-tuningEmbeddings improvementDomain adaptation

Works Best With

claude-sonnet-4-20250514gpt-4o
Created Shared

Create your own prompt vault and start sharing

Embedding Model Fine-tuning Plan | Promptsy