Integrate sparse embeddings (BM25/SPLADE) with dense embeddings for hybrid search. ## Current Dense Setup {{current_setup}} ## Sparse Model Options {{sparse_options}} ## Integration Requirements {{integration_requirements}} Implement hybrid integration: ```python class HybridEmbedder: def __init__(self, dense_model: str, sparse_model: str): pass def encode_dense(self, text: str) -> np.ndarray: """Generate dense embedding""" pass def encode_sparse(self, text: str) -> Dict[int, float]: """Generate sparse embedding (term -> weight)""" pass def encode_hybrid(self, text: str) -> HybridEmbedding: """Generate both representations""" pass class HybridIndex: def search(self, query: str, alpha: float, top_k: int) -> List[Result]: """Combined search with score fusion""" pass ``` Include: - SPLADE model integration - Score normalization - Alpha tuning methodology - Storage optimization
Sparse Embedding Integration
U
@
Integrate sparse embeddings with dense embeddings for hybrid search using BM25/SPLADE with configurable score fusion.
43 copies0 forks
Details
Category
CodingUse Cases
Hybrid searchSparse embeddingsSearch improvement
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared