Implement a smart context window manager for LLM applications. ## Model Context Limit {{context_limit}} tokens ## Content Types {{content_types}} ## Priority Rules {{priority_rules}} ```python class ContextWindowManager: """ Implement: - Token counting per content type - Priority-based content selection - Compression strategies - Overflow handling - History management """ def build_context( self, system_prompt: str, retrieved_docs: List[Document], conversation_history: List[Message], user_query: str ) -> str: # Fit everything within context limit pass ``` Include: - Sliding window for history - Document summarization triggers - Token budget allocation - Metrics for context utilization
Context Window Manager
U
@
Build a smart context window manager handling token budgets, content prioritization, and overflow strategies for optimal LLM context utilization.
61 copies0 forks
Details
Category
CodingUse Cases
Context managementToken optimizationLLM integration
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared