Design a retrieval fusion strategy combining multiple retrieval sources. ## Retrieval Sources {{retrieval_sources}} ## Fusion Requirements {{fusion_requirements}} ## Quality Goals {{quality_goals}} Implement fusion strategies: ```python class RetrievalFusion: def reciprocal_rank_fusion(self, result_lists: List[List[Result]], k: int = 60) -> List[Result]: """RRF: score = sum(1/(k + rank))""" pass def weighted_fusion(self, result_lists: List[List[Result]], weights: List[float]) -> List[Result]: """Weighted score combination""" pass def learned_fusion(self, result_lists: List[List[Result]], query: str) -> List[Result]: """Neural fusion model""" pass def cascade_fusion(self, query: str, stages: List[Retriever]) -> List[Result]: """Progressive refinement""" pass ``` Include: - Score normalization - Deduplication - Latency optimization - A/B testing framework
Retrieval Fusion Strategy
U
@
Design retrieval fusion strategies including RRF, weighted, learned, and cascade approaches for combining multiple retrieval sources.
85 copies0 forks
Details
Category
CodingUse Cases
Result fusionMulti-source retrievalSearch optimization
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared