Embedding Model Benchmark Template

U

@

·

Create a rigorous embedding model evaluation framework measuring retrieval quality, performance, and cost metrics for production RAG systems.

96 copies0 forks
Design a comprehensive benchmark for evaluating embedding models for our RAG system.

## Use Case
{{use_case_description}}

## Dataset Characteristics
{{dataset_description}}

## Models to Evaluate
{{model_list}}

Create a benchmark that measures:
1. Retrieval quality (MRR, Recall@K, NDCG)
2. Inference latency (P50, P95, P99)
3. Throughput (embeddings/second)
4. Memory footprint
5. Cost per 1M tokens

Provide:
- Python code structure for the benchmark
- Recommended test dataset size
- Statistical significance testing approach
- Visualization recommendations

Details

Category

Coding

Use Cases

Model evaluationBenchmark designPerformance testing

Works Best With

claude-sonnet-4-20250514gpt-4o
Created Shared

Create your own prompt vault and start sharing