Design a comprehensive benchmark for evaluating embedding models for our RAG system. ## Use Case {{use_case_description}} ## Dataset Characteristics {{dataset_description}} ## Models to Evaluate {{model_list}} Create a benchmark that measures: 1. Retrieval quality (MRR, Recall@K, NDCG) 2. Inference latency (P50, P95, P99) 3. Throughput (embeddings/second) 4. Memory footprint 5. Cost per 1M tokens Provide: - Python code structure for the benchmark - Recommended test dataset size - Statistical significance testing approach - Visualization recommendations
Embedding Model Benchmark Template
U
@
Create a rigorous embedding model evaluation framework measuring retrieval quality, performance, and cost metrics for production RAG systems.
96 copies0 forks
Details
Category
CodingUse Cases
Model evaluationBenchmark designPerformance testing
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared