Implement comprehensive guardrails for LLM outputs. ## Application Type {{application_type}} ## Content Policies {{content_policies}} ## Compliance Requirements {{compliance_requirements}} Build a guardrails system: ```python class LLMGuardrails: async def check_input(self, user_input: str) -> GuardrailResult: """Pre-generation checks""" pass async def check_output(self, response: str, context: dict) -> GuardrailResult: """Post-generation checks""" pass async def filter_output(self, response: str) -> str: """Apply content filtering""" pass ``` Guardrail categories: - PII detection and redaction - Toxicity filtering - Topic restriction - Factuality boundaries - Format compliance Include: - Configurable rule engine - Async processing for low latency - Logging and audit trails - Bypass mechanisms for admin
LLM Guardrails Implementation
U
@
Implement comprehensive LLM guardrails covering PII, toxicity, topic restrictions, and compliance with configurable rules and audit logging.
78 copies0 forks
Details
Category
CodingUse Cases
Content safetyCompliance enforcementOutput filtering
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared