Optimize retrieval diversity to improve RAG response quality. ## Current Retrieval Behavior {{current_behavior}} ## Diversity Issues {{diversity_issues}} ## Quality Goals {{quality_goals}} Implement diversity optimization: ```python class DiversityOptimizer: def diversify_mmr(self, query_embedding: List[float], candidates: List[Document], lambda_param: float, k: int) -> List[Document]: """Maximal Marginal Relevance""" pass def diversify_clustering(self, candidates: List[Document], k: int, clusters: int) -> List[Document]: """Cluster-based selection""" pass def diversify_aspect(self, query: str, candidates: List[Document], aspects: List[str]) -> List[Document]: """Aspect-based coverage""" pass ``` Include: - Lambda parameter tuning - Diversity metrics (ILS, coverage) - Quality vs diversity trade-off analysis - A/B test design
Retrieval Diversity Optimizer
U
@
Implement retrieval diversity optimization using MMR, clustering, and aspect-based methods with quantified quality-diversity trade-offs.
96 copies0 forks
Details
Category
CodingUse Cases
Diversity optimizationRetrieval qualityResult ranking
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared