Build a parallel retrieval orchestrator for multi-source search. ## Retrieval Sources {{retrieval_sources}} ## Orchestration Requirements {{orchestration_requirements}} ## SLA Constraints - Max latency: {{max_latency}}ms - Timeout policy: {{timeout_policy}} Implement orchestration: ```python class ParallelRetrievalOrchestrator: def __init__(self, retrievers: Dict[str, Retriever], timeout_ms: int): pass async def retrieve_parallel(self, query: str, sources: List[str]) -> Dict[str, List[Result]]: """ Execute retrievals in parallel: - Concurrent source queries - Timeout handling per source - Partial result aggregation """ pass async def retrieve_with_fallback(self, query: str) -> List[Result]: """ Fallback chain: - Primary sources - Secondary on failure - Degraded mode """ pass ``` Include: - AsyncIO implementation - Circuit breaker per source - Latency tracking - Result merging strategies
Parallel Retrieval Orchestrator
U
@
Build a parallel retrieval orchestrator with concurrent source queries, timeout handling, fallback chains, and circuit breakers.
98 copies0 forks
Details
Category
CodingUse Cases
Parallel retrievalMulti-source searchAsync orchestration
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared