Build a text preprocessing pipeline optimized for embedding quality. ## Text Sources {{text_sources}} ## Embedding Model {{embedding_model}} ## Quality Requirements {{quality_requirements}} Implement preprocessing: ```python class EmbeddingPreprocessor: def clean_text(self, text: str) -> str: """ Cleaning steps: - Unicode normalization - Whitespace normalization - Special character handling - Encoding issue fixes """ pass def normalize_format(self, text: str, source_type: str) -> str: """ Source-specific normalization: - HTML to text - PDF artifacts removal - Code block handling - Table conversion """ pass def enhance_for_embedding(self, text: str) -> str: """ Embedding optimization: - Key term emphasis - Structure preservation - Metadata integration """ pass ``` Include: - Source-specific handlers - Quality metrics - Batch processing - Error recovery
Embedding Preprocessing Pipeline
U
@
Build a text preprocessing pipeline for optimal embedding quality with cleaning, format normalization, and embedding-specific enhancements.
57 copies0 forks
Details
Category
CodingUse Cases
Text preprocessingEmbedding optimizationData cleaning
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared