Embedding Preprocessing Pipeline

U

@

·

Build a text preprocessing pipeline for optimal embedding quality with cleaning, format normalization, and embedding-specific enhancements.

57 copies0 forks
Build a text preprocessing pipeline optimized for embedding quality.

## Text Sources
{{text_sources}}

## Embedding Model
{{embedding_model}}

## Quality Requirements
{{quality_requirements}}

Implement preprocessing:

```python
class EmbeddingPreprocessor:
    def clean_text(self, text: str) -> str:
        """
        Cleaning steps:
        - Unicode normalization
        - Whitespace normalization
        - Special character handling
        - Encoding issue fixes
        """
        pass
    
    def normalize_format(self, text: str, source_type: str) -> str:
        """
        Source-specific normalization:
        - HTML to text
        - PDF artifacts removal
        - Code block handling
        - Table conversion
        """
        pass
    
    def enhance_for_embedding(self, text: str) -> str:
        """
        Embedding optimization:
        - Key term emphasis
        - Structure preservation
        - Metadata integration
        """
        pass
```

Include:
- Source-specific handlers
- Quality metrics
- Batch processing
- Error recovery

Details

Category

Coding

Use Cases

Text preprocessingEmbedding optimizationData cleaning

Works Best With

claude-sonnet-4-20250514gpt-4o
Created Shared

Create your own prompt vault and start sharing