Tune vector similarity thresholds for optimal retrieval quality. ## Current Configuration {{current_config}} ## Evaluation Dataset {{eval_dataset}} ## Quality vs Quantity Goals {{quality_goals}} Implement threshold tuning: ```python class SimilarityThresholdTuner: def evaluate_threshold(self, threshold: float, eval_data: List[EvalPair]) -> ThresholdMetrics: """ Metrics: - Precision at threshold - Recall at threshold - F1 score - Average results per query """ pass def find_optimal_threshold(self, eval_data: List[EvalPair], optimize_for: str) -> float: """Grid search for optimal threshold""" pass def analyze_distribution(self, similarities: List[float]) -> DistributionAnalysis: """Analyze similarity score distribution""" pass def generate_report(self, thresholds: List[float], metrics: List[ThresholdMetrics]) -> str: """Visual report of threshold trade-offs""" pass ``` Include: - Per-query-type analysis - Confidence intervals - Production recommendation
Vector Similarity Threshold Tuner
U
@
Tune vector similarity thresholds through systematic evaluation of precision, recall, and F1 scores with distribution analysis.
85 copies0 forks
Details
Category
CodingUse Cases
Threshold tuningRetrieval optimizationQuality calibration
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared