Build a confidence calibration system for LLM outputs. ## Use Case {{use_case}} ## Current Confidence Issues {{confidence_issues}} ## Calibration Goals {{calibration_goals}} Implement calibration: ```python class ConfidenceCalibrator: def estimate_confidence(self, query: str, response: str, context: List[str]) -> float: """ Signals to combine: - Token probabilities - Self-consistency - Context coverage - Retrieval scores """ pass def calibrate(self, raw_confidence: float) -> float: """Apply calibration curve""" pass def train_calibrator(self, labeled_data: List[Tuple[float, bool]]) -> None: """Train on human-labeled accuracy data""" pass ``` Include: - Multi-signal fusion - Temperature scaling - Isotonic regression - Expected calibration error metrics
Confidence Calibration System
U
@
Build an LLM confidence calibration system combining multiple signals with trained calibration curves and reliability metrics.
27 copies0 forks
Details
Category
CodingUse Cases
Confidence calibrationUncertainty estimationReliability scoring
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared