Implement contextual bandits for adaptive model selection. ## Model Options {{model_options}} ## Context Features {{context_features}} ## Optimization Goal {{optimization_goal}} Build the bandit system: ```python class ModelSelectionBandit: def __init__(self, models: List[str], context_dim: int): pass def select_model(self, context: np.ndarray, exploration_rate: float) -> str: """ Algorithms: - LinUCB - Thompson Sampling - Epsilon-greedy """ pass def update(self, context: np.ndarray, model: str, reward: float) -> None: """Update model with observed reward""" pass def get_model_stats(self) -> Dict[str, ModelStats]: """Return selection stats and confidence""" pass ``` Include: - Reward function design - Exploration vs exploitation tuning - Cold start handling - Online learning updates
Contextual Bandits for Model Selection
U
@
Implement contextual bandits for adaptive LLM model selection using LinUCB or Thompson Sampling with online learning updates.
97 copies0 forks
Details
Category
CodingUse Cases
Adaptive selectionModel optimizationOnline learning
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared