Debug embedding similarity issues in the retrieval system. ## Problematic Query-Document Pairs {{problematic_pairs}} ## Expected vs Actual Similarity {{similarity_discrepancies}} ## Embedding Configuration {{embedding_config}} Build a debugging analysis: ```python class EmbeddingSimilarityDebugger: def analyze_pair(self, query: str, document: str) -> DebugReport: """ Analyze: - Token overlap - Semantic relationship - Embedding space positioning """ pass def compare_with_neighbors(self, embedding: np.ndarray, k: int) -> List[Neighbor]: """Find nearest neighbors for context""" pass def identify_failure_pattern(self, pairs: List[ProblemPair]) -> FailurePattern: """ Patterns: - Vocabulary mismatch - Semantic gap - Length disparity - Domain shift """ pass def suggest_improvements(self, pattern: FailurePattern) -> List[Improvement]: """Recommend fixes""" pass ``` Include: - Visualization tools - Root cause categorization - Actionable recommendations
Embedding Similarity Debugger
U
@
Debug embedding similarity issues with pair analysis, neighbor comparison, failure pattern identification, and improvement recommendations.
95 copies0 forks
Details
Category
CodingUse Cases
Similarity debuggingRetrieval troubleshootingEmbedding analysis
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared