Implement a semantic caching layer for LLM responses. ## Requirements {{cache_requirements}} ## Technology Stack {{tech_stack}} ## Expected Query Volume {{queries_per_day}} Provide a complete implementation including: ```python # 1. Cache key generation using embeddings # 2. Similarity threshold configuration # 3. Cache invalidation strategy # 4. Hit/miss metrics collection # 5. Fallback handling ``` Include: - Trade-offs between similarity thresholds - Memory estimation formulas - Cache warming strategies - Monitoring dashboards configuration
Semantic Cache Implementation
U
@
Build a production-ready semantic caching system for LLM responses with configurable similarity matching and comprehensive monitoring.
8 copies0 forks
Details
Category
CodingUse Cases
Latency reductionCost optimizationCache implementation
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared