Build a document deduplication pipeline for our RAG corpus. ## Corpus Statistics {{corpus_stats}} ## Deduplication Goals {{dedup_goals}} ## Resource Constraints {{resource_constraints}} Implement deduplication: ```python class DocumentDeduplicator: def find_exact_duplicates(self, documents: List[Document]) -> List[Set[str]]: """Hash-based exact matching""" pass def find_near_duplicates(self, documents: List[Document], threshold: float) -> List[Set[str]]: """MinHash/LSH for near-duplicates""" pass def find_semantic_duplicates(self, documents: List[Document], threshold: float) -> List[Set[str]]: """Embedding-based similarity""" pass def merge_strategy(self, duplicate_set: Set[str]) -> Document: """Select best representative or merge""" pass ``` Include: - Scalable implementation (100M+ docs) - Quality preservation - Incremental deduplication - Audit trail
Document Deduplication Pipeline
U
@
Build a scalable document deduplication pipeline using hash, MinHash/LSH, and embedding-based methods with merge strategies.
55 copies0 forks
Details
Category
CodingUse Cases
DeduplicationCorpus cleaningData quality
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared