Implement context compression techniques to fit more information in LLM context windows. ## Current Context Usage {{context_usage}} ## Content Types {{content_types}} ## Quality Requirements {{quality_requirements}} Implement compression strategies: ```python class ContextCompressor: def summarize_documents(self, docs: List[str], target_ratio: float) -> List[str]: """Abstractive summarization""" pass def extract_key_sentences(self, doc: str, query: str, k: int) -> str: """Query-focused extraction""" pass def compress_dialogue(self, history: List[Message], keep_recent: int) -> List[Message]: """Dialogue compression""" pass ``` Techniques to implement: - LLMLingua-style compression - Query-aware summarization - Hierarchical compression - Token-level pruning Include quality evaluation methodology.
Context Compression Techniques
U
@
Implement context compression techniques including summarization, query-focused extraction, and token pruning to maximize information density.
1 copies0 forks
Details
Category
CodingUse Cases
Context compressionToken optimizationInformation density
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared