Implement a cross-encoder reranker for improving retrieval precision. ## Retrieval System {{retrieval_system}} ## Reranker Model Options {{model_options}} ## Latency Budget {{latency_budget}}ms Build the reranker: ```python class CrossEncoderReranker: def __init__(self, model_name: str, max_length: int = 512): pass def rerank(self, query: str, documents: List[str], top_k: int) -> List[ScoredDocument]: """Score and rerank documents""" pass def rerank_batched(self, query: str, documents: List[str], batch_size: int) -> List[ScoredDocument]: """Batched inference for efficiency""" pass def calibrate_scores(self, raw_scores: List[float]) -> List[float]: """Normalize scores to 0-1 range""" pass ``` Include: - Model selection guidance - Batching optimization - GPU vs CPU trade-offs - Integration patterns - Caching reranked results
Cross-Encoder Reranker Implementation
U
@
Implement a cross-encoder reranker with batched inference, score calibration, and integration patterns for improved retrieval precision.
89 copies0 forks
Details
Category
CodingUse Cases
Reranking implementationRetrieval precisionSearch quality
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared