Build a system for dynamically configuring retrieval parameters based on query characteristics. ## Query Types {{query_types}} ## Configuration Options {{config_options}} ## Performance Targets {{performance_targets}} Implement dynamic configuration: ```python class DynamicRetrievalConfig: def analyze_query(self, query: str) -> QueryProfile: """ Profile includes: - Complexity level - Expected result type - Precision vs recall preference - Latency sensitivity """ pass def generate_config(self, profile: QueryProfile) -> RetrievalConfig: """ Configure: - top_k - similarity_threshold - reranking enabled - hybrid search weights """ pass def learn_from_feedback(self, query: str, config: RetrievalConfig, success: bool) -> None: """Update configuration policy""" pass ``` Include: - Query classification model - Configuration policy learning - Performance monitoring
Dynamic Retrieval Configuration
U
@
Build dynamic retrieval configuration that adapts parameters based on query complexity, expected results, and learned feedback.
0 copies0 forks
Details
Category
CodingUse Cases
Dynamic configurationAdaptive retrievalQuery optimization
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared