Implement a hybrid search system combining dense and sparse retrieval. ## Requirements {{search_requirements}} ## Data Characteristics {{data_characteristics}} ## Technology Stack - Vector store: {{vector_store}} - Full-text search: {{fts_engine}} Create a complete implementation: ```python class HybridSearcher: def __init__(self, dense_weight: float = 0.7): # Initialize both retrievers pass def search(self, query: str, top_k: int) -> List[Result]: # 1. Dense retrieval # 2. Sparse retrieval # 3. Score fusion (RRF) # 4. Reranking pass ``` Include: - Reciprocal Rank Fusion implementation - Weight tuning methodology - Evaluation metrics - A/B test setup
Hybrid Search Implementation
U
@
Build a hybrid search system combining dense embeddings and sparse retrieval with score fusion and reranking for improved retrieval accuracy.
34 copies0 forks
Details
Category
CodingUse Cases
Search improvementRetrieval optimizationHybrid search
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared