Build a hallucination detection system for RAG outputs. ## RAG System Description {{rag_system}} ## Document Corpus {{corpus_description}} ## Acceptable Hallucination Rate {{hallucination_threshold}} Implement multi-layer detection: ```python class HallucinationDetector: def detect(self, query: str, context: List[str], response: str) -> DetectionResult: """ Layer 1: Entailment checking (NLI model) Layer 2: Citation verification Layer 3: Factual consistency scoring Layer 4: Confidence calibration """ pass def get_evidence(self, claim: str, context: List[str]) -> Evidence: """Find supporting/contradicting evidence""" pass ``` Include: - Model selection for each layer - Threshold tuning methodology - False positive/negative trade-offs - User-facing confidence indicators
Hallucination Detection System
U
@
Build a multi-layer hallucination detection system for RAG with entailment checking, citation verification, and factual consistency scoring.
73 copies0 forks
Details
Category
CodingUse Cases
Hallucination detectionQuality assuranceRAG safety
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared