Implement a system for controlling LLM output length precisely. ## Length Requirements {{length_requirements}} ## Content Priorities {{content_priorities}} ## Quality Constraints {{quality_constraints}} Build the controller: ```python class OutputLengthController: def estimate_output_length(self, prompt: str, task_type: str) -> int: """Predict expected output tokens""" pass def calibrate_prompt(self, prompt: str, target_tokens: int) -> str: """ Add length guidance: - Explicit token limits - Structural constraints - Detail level instructions """ pass def truncate_smartly(self, output: str, max_tokens: int) -> str: """ Preserve: - Complete sentences - Key information - Structural integrity """ pass def expand_to_minimum(self, output: str, min_tokens: int, context: str) -> str: """Expand output to meet minimum length""" pass ``` Include: - Token counting accuracy - Length distribution analysis - Retry strategies
Constrained Output Length Controller
U
@
Build an output length controller with estimation, prompt calibration, smart truncation, and expansion for precise length control.
48 copies0 forks
Details
Category
CodingUse Cases
Length controlOutput formattingToken management
Works Best With
claude-sonnet-4-20250514gpt-4o
Created Shared